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Abstract

We present an analysis of neuronal model behaviour with correlated synaptic inputs including the cases that correlated inputs are
equivalent to exactly synchronized inputs and correlated inputs are not equivalent to exactly synchronized inputs.

For the former case,

it is found that the fully (synaptically) correlated inputs assumption (see Section 1 for definition), which is used in most, if not all,
theoretical and experimental work in the past few years, results in a waste of resources and might be an unrealistic assumption;
with an exactly balanced excitatory and inhibitory, and synaptically correlated input, the integrate-and-fire model simply behaves
as a synchrony detector in certain parameter regions;

the well-known diffusion model, upon which most theoretical work is based, fails to approximate the model with synaptically
correlated Poisson inputs. A novel way to approximate synaptically correlated Poisson inputs is then presented;

an optimization principle on neuronal models with partially (synaptically) correlated inputs is proposed, which enables us to

predict microscopic structures in neuronal systems.

For the latter case,

® with tightly synchronized inputs (see Section 1 for definition), the model behaviour depends on its integration time of input

signals and could exhibit bursting discharge.

® for loosely synchronized inputs, we found that correlated inputs are equivalent to the post-spike voltage reset mechanism

proposed in the literature.

© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past few years, we have seen a large body of
literature devoted to studying single neuron models with
stochastic inputs (see for example Brown et al., 1999;
Destexhe and Pare, 1999; Feng, 1997; Feng and Brown,
1998a; Harris and Wolpert, 1998; Konig et al., 1996;
Mainen and Sejnowski, 1995; Softky and Koch, 1993;
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Shadlen and Newsome, 1994, 1998; Salinas and
Sejnowski, 2000; Stevens and Zador, 1998), aiming to
gain further insights into the coding problem. One
popular assumption when studying neurons with
stochastic inputs is that they receive synaptically
correlated inputs, in contrast to conventional indepen-
dent inputs (Tuckwell, 1988). Within the synaptically
correlated input framework, many interesting results
have been obtained: we (Feng and Brown, 2000), among
others (Destexhe and Pare, 1999; Salinas and Sejnowski,
2000; Stevens and Zador, 1998; Shadlen and Newsome,
1998), have shown that a small correlation between
synaptical inputs could very efficiently drive a cell to fire
irregularly. Despite the above-mentioned fact which
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indicates that it is clear now which cellular mechanism
could result in an irregular firing, it is still intriguing to
understand the functional role of exactly balanced
inputs to a neuron.

The first question we wish to answer is what is the
essential difference between neuronal responses with
exactly balanced inputs compared with that of purely
excitatory inputs. With a small correlation and in certain
parameter regions, a neuron with integrate and fire
mechanisms and with an exactly balanced input is
simply a detector of input synchrony: it fires whenever a
synchronous signal is presented and is completely silent
otherwise. Shadlen and Movshon (1999) have recently
argued that ‘Another flaw in the temporal binding
hypothesis concerns the question of which neurons
would read the binding signal, and how’. Our results
indicate that by controlling its inhibitory input strength,
a neuron could behave as a synchrony detector.

A second question is how to approximate a discrete
process (a stochastic process with discontinuous trajec-
tory), such as the integrate-and-fire model with a
Poisson process input, with a continuous process. A
discrete process is usually very difficult to deal with
theoretically. Hence most, if not all, theoretical work is
based upon using the Brownian motion (diffusion
model) to approximate the Poisson process (random
walk model). It is generally believed that this is a
reasonable approximation, a basic assumption we
employed before (Feng and Brown, 2000) as well. The
advantage of the continuous process over the original,
discrete one is obvious (Feng and Hadeler, 1996): we
could use the powerful theory of stochastic analysis to
handle the model. Nevertheless, we find that with
synaptically correlated inputs there are essential dis-
crepancies between neuron models with discrete inputs
and continuous inputs, which implies that conclusions
developed in terms of continuous versions might be very
misleading. A novel way to approximate synaptically
correlated inputs is then proposed.

We then go a step further and analyse whether fully
correlated inputs (Fig. 1) to a neuron is optimized or
not. Here fully correlated inputs are in the sense that all
active synapses are mutually correlated and optimiza-
tion is maximizing efferent firing rates. We argue that
fully correlated inputs (Fig. 1) to a neuron result in a
waste of resources. An optimization principle—to
maximize neuronal outputs with partially correlated
inputs (see Fig. 1)—is then proposed. The principle
enables us to investigate structures of neuronal systems:
how many pre-synaptic neurons are synaptically corre-
lated and projected to a post-synaptic neuron. We find
that when every Vi,./a+ n neurons (see Section 3.2.1
for an exact definition of the number n) are fully
correlated and send their outputs to a post-synaptic
neuron, the post-synaptic neuron maximizes its firing
rate, where V., is the threshold and «a is the magnitude
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Fig. 1. Schematic representations of fully correlated inputs (left): all
inputs are mutually correlated (indicated by the same line type); and
partially correlated inputs (right): inputs are not all mutually
correlated. Only inputs within the same group (indicated by the same
line type) are mutually correlated. See also Fig. 2.

of EPSP (excitatory post-synaptic potential). Interest-
ingly, under these circumstances, the coefficient of
variation of efferent (CV) spike trains also attains a
maximum. The conclusion is independent of input firing
rates and correlation coefficients.

All results above are obtained under the assumption
that correlation is equivalent to exact synchronization.
Certainly correlation and synchronization are in general
different, as pointed out in the literature (Brody, 1999).
Loosely and tightly synchronized inputs are then taken
into account (Fig.2, also see Section 2.3 for exact
definition). Basically, the neuronal integration time of
input signals now plays an important role. With tightly
synchronized inputs, the integrate-and-fire model ex-
hibits bursting behaviour. With loosely synchronized
inputs, the model behaviour is more or less similar to
that with post-spike voltage reset mechanisms proposed
in Troyer and Miller (1997). To drive a cell to fire
irregularly, the post-spike voltage reset mechanism and
synaptically correlated inputs are two predominant
assumptions proposed in the literature. We demonstrate
that the two assumptions are closely related.

Here we only consider positively correlated inputs.
For results on how a neuron might employ negative
correlations between its input spike trains to exhibit the
stochastic resonance phenomenon, we refer the reader to
Feng and Tirozzi (2000). In Fig. 2 we summarize all
cases of inputs considered in the present paper. A good
review on correlated neuron activity is presented in
Salinas and Sejnowski (2001).

2. Methods
2.1. Models

For two given quantities V> V,ey and when
v; < Ve, the membrane potential v, satisfies the follow-
ing dynamics:

dv, = — L dt + dy(0),
y 2.1)

00 = Viests
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Tightly synchronized

Loosely synchronized

Fig. 2. Schematic representations of all cases of inputs considered in the present paper. Thick, vertical lines are correlated inputs. Thin, vertical lines
are uncorrelated inputs. Upper panel: correlated input is equivalent to synchronized input, fully correlated input (left), partially correlated input
(right); bottom panel: correlated input is not equivalent to synchronized input, tightly synchronized input (left) and loosely synchronized input

(right).

where 7y >0, I,,(?) is the synaptic input given by
dlyn(f) = adE(f) — bdI(2) (2.2)

with a>0, b>0 as the magnitude of single EPSP or
IPSP, respectively, E,I are superposition of Poisson
processes. A discussion on why we choose the Poisson
process as an input to the model is outside the scope of
the present paper and we simply refer the reader to
theoretical papers, for example Abbott et al. (1997), and
experimental data, for example Softky and Koch (1993),
for more details. Basically an incoming EPSP will push
the membrane potential to increase with an increment of
a; but an incoming IPSP at time ¢ will reduce the
membrane potential from v, to v; — b. The membrane
potential decays with a time-scale of y. For simplicity of
notation we assume that ¢ = b from now on. Once v, is
greater than Vy,, a spike is generated, and v, is reset to
Vies:. We also assume a lower bound V7, for v, i.e.
v, = max(vs, Vigy).

2.2. Correlation = exact synchronization

Suppose a neuron receives excitatory inputs (Poisson
processes) from p active dendrites with correlation
coefficient ¢ (Mattews, 1996; Zohary et al., 1994), i.e.
all p active dendrites are mutually correlated (fully
correlated, see Fig. 1 and Section 3.2), and Ng;, a
Poisson process, is the input EPSPs travelling along
the i-th dendrite, i = 1, ..., p. The total excitatory input

is then
?

E=Y" Ng. (2.3)
i=1

According to results in Feng and Brown (1998b)

Eq. (5.1) (see also Salinas and Sejnowski, 2000), we
further have

)

E=Y N} +pN*, (2.4)
i=1

where NI-E, i=1,...,p are identical and independent

Poisson processes with a rate (1 — ¢)Ag, and N* is again
an independent Poisson process with a rate cAg. The
proof of Eq.(2.4) is quite straightforward. Denote
Ng;= N[E + NE, we see that it is reasonable since the
summation of two Possion processes with a rate m; and
m,, respectively, will be a Poisson process with a rate
my + my. Therefore, each Ng; is a Poisson process and
the correlation coefficient between Ng; and Ng; is ¢
provided that i#j. The total excitatory input is a
composition of two point processes.

For p correlated inputs with a rate Ag and correlation
coefficient c, they are equivalent to a summation of

® p independent (asynchronous) inputs with a rate
(1 = ¢)Ag, reduced rate from Jg to (1 — ¢)Ag, and

® a common (synchronous) input with a rate cAg,
enlarged amplitude from 1 to p.
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Because of the factor p in front of the common input
term NZ, it implies that the neuron sometimes receives
pulsed inputs with a magnitude of ap, which is in general
very large, compared to neuron’s threshold. For
example, suppose that around 40 EPSPs are needed
for a neuron to cross the threshold (Shadlen and
Newsome, 1994), starting from the resting potential,
then the neuron will fire whenever it receives a common
input, provided that p > 40.

The same formulation holds true for inhibitory inputs
with a ratio r,0<r<1, i.e. IPSPs travel with a rate rig.
In particular, when r = 0 the neuron receives exclusively
excitatory inputs; when r =1 the inhibitory and
excitatory input is exactly balanced.

The input is decomposed into two parts: asynchro-
nous input Y 7 | N and synchronous input N£. Denote
7 as the time (inter EPSP intervals) of synchronous
input, i.e.

NE() = Zk: I{Zf:1 e (2.5)

where 14 is the indicator function of a set 4. Let

T ={tii=1,..} (2.6)

be the set of efferent interspike intervals

T ==, 0 S el
tk, j: 17"'}}7

T=Atyi=1,..., if S td{>h,
e j=l. 3y =7 =7

2.7)

Roughly speaking 7° is the set of spike intervals
resulting from synchronous inputs and Z¢ is due to
asynchronous inputs. An explanation of Eq.(2.7) is
presented in Fig. 3.

Finally we emphasize that Eq. (2.4) is obtained under
the assumption that correlation is equivalent to exact
synchronization.

2.3. Correlation # exact synchronization

Essentially Eq. (2.4) relies on the assumption that
correlations are equivalent to synchronization, a pre-
vailing assumption used in neuroscience. Certainly
correlation and synchronization are in general different,
as it has been pointed out in the literature (Brody, 1999)
(see below). As a generalization of results in the previous
subsection, we also consider the following form of
correlated inputs:

P V4
E = 21: NE + Z: NE, (2.8)
i= i=

Time

Fig. 3. Schematic representations of 7, 7° and 79 7 =
it o, 3,14, 85}, T° = {t] = to, 1} = t5}, we then have T = {11, 13, 14}.

where

0
E _ .
Nl,:; - ; 1{l>z s

J
k=1"k’
o0
NE = I — . (2.9)
i ; (Y | =1}

It is easily seen that N/, and Nﬁ, i#j, ¢>0 are
correlated but not synchronized. The meaning of
Eq. (2.9) is clear. If the neuron receives a pulse input

from the first synapse, say at time 211;:1 1}, then at time

j j
dfi+e .Y h+(@— e
k=1 k=1
there is an EPSP arrives along a synapse. When ¢ = 0,
Eq. (2.8) is exactly Eq.(2.4). Essentially, we consider
two cases of ¢ ¢ is small enough, corresponding to the
exact synchronization case discussed in the previous
subsection (see Fig. 2, bottom panel, left); otherwise the
neuron receives pulsed inputs with time difference ¢ (see
Fig. 2 bottom panel, right). Assume that the bottom
spike trains (thick vertical lines) in Fig. 2 bottom panel
(right) are ¢}, k = 1,2,3. We then see that there is a delay
in time for the second spike trains (thick vertical lines in
the second spike trains, from bottom to up), namely the
input spikes are £, +¢, k =1,2,3.

2.4. Summary of notation

For clarity, we provide a list of notation and
explanations used in the current paper (see Table 1).
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Table 1

A summary of main notation, definition, first appearance and relationships between notation

Notation Definition First appearance Relationship with other notation
E Total excitatory inputs Eq. (2.2) Eq. (2.3)

Ngi EPSPs along the i-th synapse Eq. (2.3) Eq. (2.3)

NE Independent EPSPs along the i-th synapse Eq. (2.4) Eq. (2.4)

NE Common EPSP input for all synapses Eq. (2.4) Eq. (2.4)

t i-th synchronous input Eq. (2.5) Egs. (2.5) and (2.7)

T’ Efferent spike trains generated by synchronous inputs Eq. (2.7) Eq. (2.7)

T Efferent spike trains generated by asynchronous inputs Eq. (2.7) Eq. (2.7)

T Efferent spike trains Eq. (2.7) Eq. (2.7)

t k-th efferent spike Eq. (2.6) Egs. (2.6) and (2.7)

NE i-th afferent spike trains with a delay ¢ Eq. (2.9) Eq. (2.9)

Nf Synchronous afferent spike trains in a block Eq. (3.6) Eq. (3.6)

3. Results We go a step further to consider the extreme case of

3.1. Fully correlated inputs: correlation = exact
synchronization

3.1.1. Synchrony detector

We first fix a few parameters of the model y = 20 ms,
Vire =20mV, Vi =0mV, Vi, =—10mV, j~E =
100 Hz, c€]0, 1], re[0, 1]. See for example Brown et al.
(1999) and references therein for the choice of these
parameters. The model is solved using an Euler scheme
(Albeverio et al., 1995) of step size (integration time of
input signals) 2 = 0.001 and 20 000 interspike intervals
are generated for calculating mean interspike intervals
(ISIs) and CV.

When a neuron receives an exactly balanced, inde-
pendent (¢ =0, r = 1) input, from Fig. 4 we sce that it
fires extremely slowly. From the results of the previous
subsection, we know that when a neuron receives fully
correlated inputs, it will fire with a rate greater than cAg
provided that

ap > (Vthre - Vlow)- (31)

Eq. (3.1) is true in our set-up of the model if @ > 0.3. In
other words when a > 0.3 we have

T={t,i=1,..,} 3.2)

(compare with Eq. (2.7)). Because the firing resulting
from independent inputs is so slow, we could expect that
the neuron with synaptically correlated inputs fires if
and only if it receives synchronous inputs. In other
words, it acts as a synchrony detector: firing if and only
if a synchronous input is present. Fig. 4 with a = 0.5
confirms the claim. When ¢ = 0.1, the synchronous
input is 10 Hz, the model fires with a mean interspike
interval of 96 ms; when ¢ = 0.5, the synchronous input
is 50 Hz, the cell fires with a rate of 50 Hz.

In terms of the notation of the previous subsection we
see that when r = 1 and @ = 0.5 we have

T~T ={ti=1..}

a=2.0mV (Fig.5). Now the situation is different.
Without synchronous inputs, the cell fires relatively fast.
For example, when r = 1, and ¢ = 0, the cell fires with a
mean INIs between 10 and 15 ms. Adding a synchro-
nous signal with small rate, cAg (c is usually small), only
slightly modifies the firing property, i.e. mean and CV.

Hence for exactly balanced synaptic inputs, when the
magnitude of EPSPs is in certain regions
(0.3 mV<a<0.5mV), the cell acts as a synchrony
detector (see Section 3.2.1 for more results with different
p-values).

3.1.2. Break down of the usual approximation

The diffusion approximation to synaptically corre-
lated inputs can be written as (Feng and Brown, 2000;
Salinas and Sejnowski, 2000)

1
du, = —5 u, dt + (apig — bprig) dt

+ Va2pig(1 + (p — D)+ b2prig(1 + (p — 1)) dB(),
(3.3)

where B(?) is the standard Brownian motion. When ¢ =
0 Eq.(3.3) gives rise to the exact result as in the
literature (Tuckwell, 1988) for independent inputs.

Fig. 6 shows that when there is no correlation in
inputs, diffusion inputs and Poisson inputs agree well
with each other (Musila and Lansky, 1994; Ricciardi
and Sato, 1990; Tuckwell, 1988). But with synaptically
correlated inputs, the situations are totally changed.
Even when ¢ = 0.1, a small correlation, we see that the
discrepancy between Poisson and diffusion inputs is
obvious: a much higher CV and output firing frequency
are obtained from the model with diffusion inputs.

In theory we know that the diffusion approximation is
true only when the rate of the Poisson process is high
and its magnitude is small. Nevertheless, a limit theory
does not tell you that exactly when it holds true and
when it fails. The input has two parts: asynchronous
input with a small magnitude and a fast rate (when c is
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Fig. 4. Mean ISIs and CV of the integrate-and-fire model with ¢ = 0.5 mV, p = 100 and ¢ = 0.0,0.1,0.2,0.5, . Note that when r = 1, the neuron fires

if and only if there is a synchronous input.
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Fig. 5. Mean ISIs and CV of the integrate-and-fire model with « =2 mV, p = 100.

small); synchronous input with a (relative) large
magnitude and slow rate (see the previous subsection).
It is the synchronous input term which violates the
condition of the validity of the diffusion approximation.
Many, if not all, theoretical developments are
confined to the case of the model with diffusion inputs.
It is thus of vital importance to develop a theoretically
tractable way to approximate the model with Poisson
inputs. We introduce the following approximation:

P )4
Z dNE — Z dN/ = pudi + o dB,, (3.4)
=

=1

where 1= a(l — c)pig(1 —r), 6> = a®>(1 — )pig(l + 7).
V
dv, = —idl + pdt 4+ odB; +apdNE —apdN'. (3.5)

Eq. (3.5) is a Markov process with diffusion and jump
components (see for example, Eq. (9.124) in Tuckwell,
1988). In Fig. 7, we see that the approximation defined
by Eq. (3.5) is excellent. Surely the idea behind Eq. (3.5)
is simple. The synchronous inputs part breaks down the
diffusion approximation and we have to retain its
original form of jump processes, but for the asynchro-
nous inputs part, we could safely approximate it by a
diffusion process.
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Fig. 7. Mean ISIs and CV of the integrate-and-fire model with « = 0.5 mV, p = 100. A comparison between the model with Poisson inputs and with

inputs as defined in Eq. (3.5).

3.2. Partially correlated inputs: correlation = exact
synchronization

As we have pointed out before, fully correlated input
assumption is not realistic in the sense that a neuron
sometimes receives a huge EPSP which results in a big
jump in its membrane potential (see the previous
subsection). We therefore consider the following partially
correlated input model (see Fig. 1 for more explanations).

p/k

)4
E=;Nf+kz;zvf (3.6)

Fori=1,...,p/k, ik +1,...,(i + 1)k neurons are in the
i-th block (see Fig. 1). The meaning of Eq. (3.6) is clear:
within each block, all synaptic inputs are correlated and
are independent in different blocks. The first term in
Eq. (3.6), >0, NE, gives rise to a Poisson process with
rate (1 — c)pAg and magnitude «, the second term with a
rate cAgp/k and magnitude ak.

It is interesting to have a comparison between
Egs. (2.4) and (3.6). The first term, asynchronous term,
is identical for two equation. The difference is in the
second term. For Eq. (2.4) there is only single Poisson
process NZ in the second term, but in Eq. (3.6) there are
p/k Poisson processes.
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Fig. 8. Signal-to-noise ratio vs. p for partially correlated input

p//p(+ (k—1)c) with k=50 and fully correlated input
p//pP(1+ (p — 1)c) where ¢ = 0.1.

In Zohary et al. (1994) the authors have argued that
when ¢ = 0.1, the signal-to-noise ratio of efferent spike
trains is saturated when a neuron receives 100 synaptic
inputs (see Fig.8). Here the signal-to-noise ratio is
defined by

SNR =mean of input/standard

deviation of input.

Hence for fully correlated input we have SNR =

p/A/pP(L+ (p— 1)) and for partially correlated input
SNR = p/+/p(1 + (k — 1)c). Nevertheless, as we have

pointed out, the fully correlated input is an unrealistic
assumption provided that correlated inputs are equiva-
lent to synchronized inputs. Even the fully correlated
assumption is true for pre-synaptic neurons, we articu-
late that only a proportion of neurons which are
correlated with each other send their outputs to a
post-synaptic neuron. In the next subsection we are
going to discuss how to optimize the number of neurons
inside a block. Fig. 8 depicts the case of k = 50. Totally
different from the conclusions in Zohary et al. (1994)
where the authors claimed that, for example, when ¢ =
0.1, the noise-to-signal ratio is stabilized when p>100.
We find that the larger the p is, the better the signal-to-
noise ratio, provided that neurons are partially corre-
lated.

Finally, we point out that results in the previous
subsection can be applied here, provided that ak > V.
(see next subsection). All the results are valid in the
circumstances that correlation is equivalent to synchro-
nization.

3.2.1. An optimization principle

Despite the fact that synaptically correlated model has
been extensively considered in the literature, dated back
to the publications of Barlow (1986), it is usually
investigated under the assumption of fully correlated
inputs. Under the assumption of partially correlated
inputs, a natural question to ask is then how many
neurons should be in each block. Here we propose a
simple optimization principle: the number of neurons in
each block, which send their outputs to a post-synaptic
neuron, ensures the optimization of the output of the
post-synaptic neuron activity. By neuron activity, we
mean its output firing rate or output variability of
interspike intervals, or other functions of 7. For
simplicity of notation we only consider mean firing
rates. Note that the number of neurons in each
correlated block is irrelevant, instead the number of
neurons they actually sent their outputs together to a
post-synaptic neuron is the quantity we take into
account.

We first consider the case of k = 10,20, ...,p. Fora =
0.5 mV, we have the following cases.

® When k > 50, we see that ak > V.. The model fires
slowly since these EPSPs with k£ = 51,52, ... have no
impact on the model behaviour and are wasted.

® When k<40, i.e. ak < V., we see that a synchronous

input is not large enough to push the neuron to cross
the threshold.

Therefore the optimal number k which ensures the
neuron to fire with its largest firing rate should satisfy
ak > Ve and ak ~ V. In other words, the optimal
number of neurons in each block should be k = 50,
provided that a =0.5mV, V. =20 mV. Numerical
simulations (Fig. 9) confirm our conclusions. When k =
50, the model emits spike trains with its largest firing
rates, averaging over re|[0, 1].

It is very interesting to note that optimizing
firing rates also maximizes the irregularity of efferent
spike trains (Fig.9). It should point out that from
the conclusions above, we know that k=50
optimizes neuronal output activity is independent of ¢,
p and Ag.

Here is a summary of our observations. Suppose that
a group of neurons are divided into a number of blocks
(columns, see Albright et al., 2000; Feng et al., 1996;
Sheth et al., 1996) and inside each block all neuronal
activities are mutually correlated. From each block, &
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a=0.5mV, p =300 (c,d). It is easily seen that both the efferent frequency and CV are maximized (optimized) when k& = 50.

neurons send out their outputs to a post-synaptic
neuron, where k satisfies ak > Vi, ak ~ Vipe. As such,
the post-synaptic neuron activities are optimized.

The next question is for a given total number of
synapses p, what is the optimal value of synapses k in
each block? A complete and rigorous answer is outside
the scope of the current paper and k& depends on the
ratio r as well. However, in one specific case r = 1, the
exactly balanced case, and 0.3 mV <a<0.5 mV, we can
have an exact answer here. From results in the previous
section we know that the neuron fires if and only if a
synchronous input arrives. Hence to drive the neuron to
fire as fast as possible, it is required that ka > V., but
ka — a< Ve, 1.€. k is uniquely determined by

k= [Vthre/a] +1,

where [-] is the integer part of a number. For example,
when V.. =20 and a = 0.5, the optimal value of
k is 41.

3.3. Correlation# exact synchronization

According to Section 2.3, the integrate-and-fire
model behaviour now depends on the asynchron-
ization parameter ¢ and 1its integration time /& of
input signals. In the sequel we consider two cases:
h~¢ (loosely synchronized) and & ~ pe (tightly synchro-
nized).

® [oosely synchronized (with a large asynchronization
parameter) inputs.
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If ¢ is too large, inputs are correlated, but are
remotely separated in time, we could expect that the
model behaviour is now similar to that of indepen-
dent inputs. When & ~¢, this case could be related to
the post-spike voltage resetting mechanism proposed,
i.e. after the membrane reaches the threshold it is
reset to a value which is higher than the resting
potential, see for example Troyer and Miller (1997).
Suppose that & = ¢ and at time ¢, the neuron fires a
spike due to the arrival of an EPSP, say ¢t =f] +
--- + 1. Then in the time interval [z, £ 4+ (p — 1)¢] there
is a positive current present. This effectively reduces
the threshold from V. to Vi, — a. Therefore our
results here provide a natural explanation of the
post-spike voltage resetting mechanism proposed in
Troyer and Miller (1997), without involving any
biophysical mechanisms of a cell (see Fig. 10).

® In the literature, two mechanisms are proposed to
explain the observed experimental results of irregular
firing of a neuron in the cortex. One is the post-spike
voltage resetting; the other is correlated inputs. Our
analysis here unifies these two mechanisms and
indicates that the correlated input is the key.

® Tightly synchronized inputs (with a small asynchro-
nization parameter).

1. When pe<h, we have the exactly synchronized
case, which we have fully discussed in the previous
subsection.

2. When pe~h, now the inputs could be highly
clustered and, as a result, the output is also very
irregular. In fact, we could easily seen that the
model exhibits bursting behaviour. In Fig. 10 we
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see that two spikes are close to each other, with a
time lag of ¢. Note that we could choose different
asynchronization parameter ¢ for different
synaptic inputs and so bursting could be
more widely separated in time (with refractory
periods).

Fig. 11 shows numerical results of tightly (¢ = 0.0024)
and loosely (¢ = 0.1) synchronized inputs. It is interest-
ing to note that the accuracy of the diffusion approx-
imations presented in Section 3.1.2 is significantly
improved, comparing with exactly synchronized inputs
(see Fig. 6).

4. Discussion

We have studied neuronal models with partially and
fully correlated inputs. With an exactly balanced
excitatory and inhibitory, and synaptically correlated
input, we have found that the integrate-and-fire model
simply behaves as a synchrony detector in certain
parameter regions. A novel way to approximate
synaptically correlated Poisson inputs has been pro-
posed. The most interesting result discussed here is
probably the optimization principle, which enables us to
find out the optimal number in each fully correlated
blocks and gives us a clue on how the nerve system
might be organized (Albright et al., 2000; Feng et al.,
1996; Sheth et al., 1996). We have also presented results
on the model with tightly and loosely synchronized
inputs.
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Fig. 10. Membrane potential of the model with tightly synchronized inputs ¢ = 0.0024 (upper panel), # = 0.1, ¢ = 0.1 and a = 0.5 mV, p = 100,
r = 0.8 and loosely synchronized inputs ¢ = 0.1 = & (bottom panel). Bursting, two spikes occur with a time lag of ¢, is indicated by vertical lines
higher than 25 mV when ¢ = 0.0024. Note that when ¢ = 0.1 and ¢ around 300 ms, the membrane potential seems not be set back to the resting

potential.
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Fig. 11. Mean ISIs and CV of the integrate-and-fire model with tightly ¢ = 0.0024 and loosely ¢ = 0.1 synchronized inputs; 2 = 0.1, ¢ = 0.1 and

a=0.5mV, p=100.

Although neuronal models with stochastic inputs
have been extensively studied in the literature, it seems
the issues discussed here have not been addressed before.
With the availability of multi-unit recording data, we
start to understand how neurons interact with each
other. Synchronization or correlation, the second or
higher order statistics, is bound to play a more important
role in neuron modelling. Our results presented here
could serve as a milestone for further rigorous study.

We emphasize here that the integrate-and-fire model
is a Type I model, i.e. the output firing rate is a
continuous function of input current, and it is generally
believed that most neurons in the cortex are of the same
type. Much as it is not saying that all results found here
for the integrate-and-fire model can be generalized to
more complex, biophysical models, we have learnt a lot
from studying simple models, as demonstrated here and,
for example, in Abbott et al. (1997).
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